
!  
 

The Power of Scrum

Learn The Number One Reason Why Projects
Consistently Deliver On Time and Watch Your

Organisation's Productivity Explode!

!
By Paul VII

© 2012 by Paul VII
Published by

PASHUN PUBLISHING

www.pashunconsulting.co.uk

Introduction
Congratulations on downloading my free scrum

ebook. I will not waste any time and I will start giving you
the facts. On the entry page where you downloaded this
book, I said I would tell you the number one reason why
projects consistently deliver on time and that you would
watch your productivity explode if you used the method.
In a sentence:

“People who deliver successful projects are sticking to a
simple set of proven rules for project success!”

If there is anything I ask you to take away from this, it is
the three words. Simple, Proven, and Success.
Now of course I am going to give you a lot more
information than just these three words. Scrum is the
exact framework that meets this criteria but knowing
exactly how to run a Scrum project and stick to the rules is
the difficult part.

The principles of Scrum are simple to understand, but the
real challenge comes when helping others to understand
and trust such a simple framework to deliver quality
products, maximise return on investment and still be fun at
the same time (yes, really!). So how can a framework be
so simple, yet so powerful? How can it save failing
projects and carve structure out of chaotic projects, even
in complex blue chip companies? Well let’s get straight
into the next chapter and all will become clear. Then I will
tell you how to get more information to put this knowledge
to practice. Enjoy!

Chapter 1. The World Before Agile and Scrum

The Waterfall Model
Although the scrum framework can be used to deliver

any type of project, it is most often used to manage
software development projects. It is well-known that many
such projects use what is known as the waterfall model to
organise and deliver. This process consists of upfront
contiguous phases. The requirements (or analysis) phase
in which an analyst will usually gather the requirements for
the product, the design phase in which the code and other
artefacts are planned or modelled, the implementation
phase where the designs are put into practice to build the
product, the testing phase where testers make sure that
the product meets the requirements to a high degree of
quality and then finally the product is released to the
public. After the product is released there is on-going
support and maintenance in a live environment which can
also be considered a phase (albeit a continuous one).
As the diagram shows, this process flows neatly from one
phase to another like a waterfall (and believe it or not,
that’s where the name “waterfall” came from). The
waterfall model has been seen as an industry standard
process for running software projects for decades and on
first glance it makes perfect sense. However, there are
some fundamental flaws with this method.

If the requirements change after the requirements phase,
then this has a knock on effect to the other phases.
Therefore, the launch date becomes more difficult to hit.
On top of that, the bulk of the defects and issues are not
usually found until the test phase. This often delays
launch, since more time is needed to fix bugs. How could
you ever forecast exactly how many defects you will find?
You cannot exactly, and so this situation usually leads to
overtime, low moral and a last-minute scramble towards
the end of the project. It is possible that a piece of
software sitting on your tablet, phone or computer, has
also been developed this way. Don't you feel sorry for the
teams?
Most (if not all) people who work on software projects
would agree that requirements rarely (if ever) remain fixed
for the long-term. This means that either the process is
interrupted to add requirements (causing annoyance and
delays to the team), or that the business agree not to
make any requirements changes. This is not an amiable
solution, since change is often a reaction to market
conditions and is often a good thing. Changing
requirements can increase the business’ return on
investment, which usually has a good knock on effect for
the company and employees. In practice, the former
situation is usually the case, as businesses will usually
aim to change requirements and worry about the problems
later. However, neither situation is good, and in the end
everybody involved in the project wants the best possible
outcome. It builds everyone’s self-esteem to see quality
work in the public domain as opposed to a “software
nightmare”.
On top of these factors, the waterfall method has to deal
with other obstacles (as any development method would)
such as unclear requirements, unrealistic deadlines and
inaccurate estimates. Even the number and calibre of
people working on the project can change. A common
culprit is known as “people pinching”. Skilled team
members can start off working on Project A, then due to
either new priorities or “gentle pressure” from other project

managers, key people are poached by Project B. This
reduces the ability to deliver Project A on time or to the
scope agreed. In business, things can change rapidly, so
change management is always key to success.
After decades of projects being run using the waterfall
model, it was clear that many companies were facing
these issues and some changes were needed to manage
change keep projects running smoothly.
In scrum, these (and other) issues are known as
impediments or blockers. Collectively, these blockers can
cause chaos on projects if allowed to, and make the
experience “less than a pleasure” shall we say.
Recognising these blockers, a group of thought leaders
joined forces to create new, iterative, “agile” methods of
working. One such method was scrum.

The Birth of Agile

The term “agile” is one that is often used and misused in
the software development industry. Given that agile is so
closely related to scrum, let us nail down exactly what
agile means and how it is relevant in the context of scrum.
By the end of the 1990s there was a broad consensus of
‘thought leaders’ who recognised the short falls of waterfall
(no pun intended) software development. Many of them
founded their own new ‘iterative’ methods of software
development. Iterative development is fundamentally
different from waterfall. As opposed to upfront phases
with lots of upfront requirements gathering, iterative
methods contain mini phases of requirements, design,
implementation, testing and delivery within a number of
weeks. This allows the business to release a few features
early and make some return on investment. They also get
to discover potential issues early and change
requirements far more often. Working in iterations also
allows the project to react to “people pinching” through
periodic re-planning.

Many of these iterative methods were also lightweight,
since their founders believed in performing the simplest
task possible to solve any given problem. Contrary to
popular belief, before the term agile was coined there
were already many such methods (of which scrum was
one) such as XP, DSDM, crystal and FDD.
In the year 2000, seeing the range of iterative and
lightweight methods, a group of industry thought leaders
named the Object Mentor Group, called a meeting at
Snowbird Ski Resort in Utah. In short, each invitee
agreed on a consensus of principles that were common to
all of them. This consensus was named the Agile
Manifesto and reads as follows:

Manifesto for Agile Software Development
We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on

the right, we value the items on the left more.

This manifesto was accompanied by a set of principles,
agreed to by all. The detail of each of these principles is
beyond the scope of this book, but needless to say,
through this agreement the term agile was born.

In summary, agile is not an alternative to scrum, but an
umbrella term for a set of methodologies and frameworks
that share a manifesto and a set of principles. Scrum is
one such framework.

Chapter 2. Introducing Scrum
In Ken Schwaber and Jeff Sutherland’s (two of the original

founders of scrum) Scrum Guide, they describe scrum as
“a framework for developing and sustaining complex products”

Scrum consists of self-organising, cross-functional teams.

Simply put, this means that the teams consist of a group
of people who each have different areas of expertise but
work together for the same outcome. A project manager
does not control them, since their expertise empowers
them to make decisions collectively.
The teams work in iterations, which allows the business
the flexibility to change their requirements but still gives
the development team the certainty it needs to deliver a
working piece of the product. This is one key thing that
makes scrum powerful.
Scrum takes its name from the analogy to rugby where a
team work together in a chaotic environment to keep
control of a ball. This can be compared to a team working
together in a chaotic environment to keep control of a
project.

Scrum Theory
“History repeats itself, unless you do something about it!”

Scrum is based on empirical process control theory. The
idea is very simple so do not let the name worry you. It
consists of three principles: transparency, inspection and
adaptation. The idea is that the scrum team, agree to be
transparent (honest) in all that they do on the project.
Being transparent means that functionality is not ‘done’
until it meets the development team’s definition of done.
Transparency builds trust between the team members.
Once the team have agreed on transparency, they agree
to consistently check up on progress (inspection) and
make improvements based on what they have seen
(adaptation). These can be improvements in practices,
sticking to values, communication or otherwise. This is
powerful stuff in industry, the ability to consistently inspect
and adapt. In that way they are improving time and time
again before, during and after the release of a product.
This is something that was not possible with the waterfall
model of development.
The scrum skeleton is a very quick and easy way to
explain the process to someone, so I will use it to explain

the process to you.
On the left side of the skeleton, we see the product
backlog, which is nothing more than a list of all the
features (and their acceptance criteria) that the business
desires for the product. A subset of that backlog, called
the sprint backlog is taken on by the team, broken down

into tasks, and worked on in an iteration called a sprint. A
sprint is a period of time less than thirty days in length and
in that time, the team work on their tasks until they
develop a working increment of the product.
Remember those mini phases of the waterfall I described
earlier? Well this is where it all takes place. There is
some requirements gathering and specification update
before the sprint, then design, implementation and testing.
Above the large sprint circle, you will see a smaller circle.
This represents the fact that every day the team meet to
inspect on progress and adapt their plan for the day in a
daily scrum meeting. At the end of a sprint, the potentially
shippable increment of the product is delivered. The
business can review the increment in a sprint review and
then release the new feature(s) to the world if they so
wish.
The team then discuss (transparently) their progress
during the sprint in a sprint retrospective (inspect) so they
can improve (adapt) on things that need improvement or
retain things that are going well. The cycle then begins
again and repeats until the product owner has nothing
more to add to the product backlog.
The scrum skeleton demonstrates the simplicity and
power of scrum as a mini factory, churning out shippable
features each sprint.

Scrum Team Roles
Scrum simplifies projects down to only three roles.
Remember? One of the benefits of this framework is
keeping things simple. The three roles are:

- The scrum master
- The product owner
- The development team

These three roles form the scrum team.

The Scrum Master
The scrum master’s purpose is to understand the scrum

rules and practices, remove any impediments or blockers
to the team delivering and to help the team to understand
how to self organise and work in a scrum manner. The
scrum master facilitates for the scrum team wherever it
makes sense to do so. The scrum master is your go-to
guy in terms of how the scrum framework should operate,
and this applies to anyone in the organization.
The scrum master usually understands how to aid the
product owner in maximising return on investment from
the business and he helps the team to work together to be
as productive as humanly possible and deliver a shippable
increment of the product.

The Product Owner
The product owner is responsible for creating
requirements on behalf of the business. He prioritises
based on business needs and is responsible for managing
the product backlog, which is the list of all the features that
the business requires in the finished product. The product
owner is responsible for making decisions that maximise
return on investment and for making priority calls or trade-
offs to maximise the product’s value.

The Development Team
The team are responsible for building a potentially
shippable product increment in each sprint. Scrum is
clear that there are only three roles in the scrum team. It
does not go into the specifics of all of the different possible
knowledge experts within the development team, because
the idea is that if push came to shove, team members
would collaborate to perform tasks outside of their role to
deliver the product.
The development team are self-organising and
collaborative, as well as skilled in whatever is needed to
deliver the project. For example, in a typical technical
project you might have developers, graphic designers, and
user experience specialists working together in a sprint to

create a product increment.
One key difference between scrum and many other
frameworks is that the development team are explicitly
experts in their field as opposed to controlled resources.
They look to the scrum master for coaching, guidance and
the removal of impediments. They look to the product
owner for clear requirements, prioritisation and trade off
calls.

Development Team Size
One important fact that is often overlooked, is the optimum
size of the team. Scrum teams are usually small because
it helps them to be more cohesive, and communicate
efficiently. The optimum size is between three and nine).
This is not a number that just materialised over a chat in
the local bar. It is based on experience of thought leaders
who have been doing team based work for years. From
my experience, having tried and tested these team sizes, I
can stand by them as numbers that create highly
productive teams. However, as you know, there is no
substitute for common sense in these cases.

Time-boxes (Events) and Rules
You may not be familiar with the term ‘time-box’. A time-
box is a period of time dedicated to a specific event in
scrum. In the new scrum guide, the term time-box has
been renamed ‘event’, but as the term ‘time-box’ is
prevalent at this time, I will continue to use it.
Part of the scrum master's role is to carry out time
management very strictly. This means beginning and
ending meetings and sprints on time and helps the team
to maximise their productivity.
Scrum has a number of time boxes and I will outline them
briefly, as there is far more detail on them in the remainder
of this book. It is the scrum master’s role to organise and
facilitate all of these events:

Sprint
A sprint is a period of time less than four weeks in length,
during which the team build a shippable increment of the
product.

Sprint Planning Meeting
The team plan the work that they will do in the upcoming
sprint. The meeting lasts no more than four hours for a
two-week sprint. There are two halves to the meeting, the
“what” and the “how”. In the first half of the meeting, the
product owner presents the list of features that he would
like the team to deliver from the product backlog. He
explains them and the team ask questions. Eventually
they pick the features they believe they can commit to in
the sprint. In the second half of the meeting, the team
break the stories into tasks and estimate them. In this
way, they design their work and decide how they will build
the product increment. They may adjust and negotiate
which stories they can commit to with the product owner
but finally they will make a commitment for the sprint.

Daily Scrum
This is a daily meeting, lasting no more than 15 minutes.
Usually, one by one, each development team member
answers the following questions (asked by the scrum
master): What did you do yesterday? What do you aim to
do today? do you have any impediments to delivery? The
scrum master takes note of any impediments and aims to
resolve them as quickly as possible. Anyone else at the
daily scrum remains silent so that the meeting can be as
productive as possible for the team. Any issues can be
discussed afterwards.
The sprint backlog and sprint burn-down should be visible
to draw attention to the team's progress or any
impediments (see definitions in this chapter).

Sprint Review
This meeting is held at the end of each sprint and allows
the team to demo the increment of the product to the
product owner and stakeholders. The stakeholders ask
questions and make suggestions to the product owner.
The product owner makes notes to adapt the backlog if
necessary based on suggestions or the output from the
demo.

Sprint Retrospective
This is a meeting held after the review and before the next
sprint. One by one, each team member answers the
questions: “What worked in this Sprint?” and “What could
be improved in the next sprint?”. This is a chance for the
team to inspect and adapt. It generates continuous
improvement.
Each of these events has a specific purpose and these
are the only set of events that scrum defines in order to
deliver a project.

Release Planning Meeting
The release planning meeting is mentioned in the first
revision of The Scrum Guide. The purpose of this, is for
the product owner to present a subset of features from the
backlog and the team to agree what looks feasible to
deliver in terms of scope or a release date. This, however,
is not a commitment. Usually, after three to four sprints
the team set a velocity (pace at which they work). This
can be used to calculate how many features are likely to
be completed by the release date (for date driven
projects), or when the scope is likely to be delivered (for
scope driven projects). See my section on release
planning for more information.

Artefacts
Product Backlog
The product backlog is a list of all the features that the

product owner would like to see in the finished product.
This list constantly evolves and changes over time. The
product owner maintains the backlog and works with the
business stakeholders to form requirements. He also
works with the team to get suggestions, technical input
and estimates.
Since a product backlog contains features that apply to
the lifetime of the whole product (as opposed to the
release), a number of features that the product owner
would like to release is referred to as a release backlog.

Monitoring the Progress of a Release – The Release
Burn down

The release burn down is a common method of monitoring
progress towards the release of a product. It shows the
number of story points and sprints remaining till launch.
Simply put, the burn-down makes it easy to see if a project
is on track, since a line (or chart) tracks progress and if all
is on track the line will be on or very close to it’s diagonal
guide line.

Sprint Backlog
The sprint backlog is the set of items that the development
team will work on in a sprint to deliver an increment of

functionality. It is a selection from the product backlog,
initially picked by the product owner but finally committed
to by the development team. It consists of features, tasks
and their estimates.

Monitoring the Progress of a Sprint - Sprint Burn
down

As with the release burn down, the sprint burn down helps
the scrum team monitor progress within a sprint. The
vertical axis usually shows ‘hours’ or ‘number of tasks’ and
is related to the number of tasks remaining in the sprint
Backlog. The horizontal axis shows the number of days in
the sprint. A line track’s the team’s progress (number of
hours of tasks done each day) and ideally this should be a
constant number resulting in zero hours of tasks left at the
end of a sprint. As with the release burn-down, the line
tracking progress should as closely as possible mirror the
guiding line.

Shippable Product Increment
This is a piece of functionality delivered by the team at the
end of each sprint. It should be potentially shippable and
meet the team’s definition of ‘done’ agreed at the start of
the project.

Each of these artefacts either has the purpose of helping
us to build a product, helping us to track the products in
terms of progress or is the actual outcome of the team's
work. We will explore them in more detail on the chapters
to follow.

Summary
- Scrum allows us to release pieces of the product

early by using sprints and getting early ROI
- Mastering the scrum rules is essential to deliver on

time
- Retrospectives, Planning and Daily Scrum Meetings

dramatically explode productivity
- Self organising teams dramatically reduce

management overhead
- High quality is delivered by defining a definition of

done, adhering to it in each sprint and reviewing in a
sprint review

Congratulations on reading this far! You have read an
overview of the basics of scrum. You know why it is so
powerful.

So, what is the next step?
The next step is to get a more solid foundation in scrum. If you like
the overview you read here. If you are serious about delivering on
time and exploding productivity within your team or organisation, or
you want to pursue a certification in scrum, You will need to get a
solid grounding that will allow you to fully grasp the inner workings
of each event, tasks of each role and value of each rule. You can
get a solid grounding with the answer to the questions:

- How do I kick off a project with scrum?
- How do I carry out the scrum events?
- Who should play the role of Scrum Master, Product Owner

to get the most out of the process?

- How do I become a Certified Scrum Master, Team Member
or Product Owner?

- How do I master the rules in order to meet the deadlines?
- How do I convince the department or business to use

scrum?

You can obtain exactly this by getting the Udemy Top
#10 Best-selling Video Training Package based on my
Amazon Top 10 Bestselling Books - the complete
overview Scrum “Scrum Mega Video Training”

It is actually 7 online training courses in one package and
also at the time of this document’s writing, the online video
training edition is being sold for the special price of
$29.97. Here’s what you get:

Course 1: Agile Scrum Training &

Scrum Certification Preparation
Learn the foundation of scrum

Prepare for scrum certification

With emphasis on Scrum Master PSM 1 (value $199)

Click to buy $29.97 for a limited time
Click to buy $29.97 for a limited time

Course 2: User Stories:
Learn how to write and update agile requirements (value $50)

Click to buy $29.97 for a limited time
Click to buy $29.97 for a limited time

Course 3: Scrum Step by Step with Examples:
Learn exactly how to roll out scrum in your team or organization from the ground up
with examples (value $199)

Click to buy $29.97 for a limited time
Click to buy $29.97 for a limited time

Course 4: Project Deadline Training:
Learn how the pros deliver projects on time every time (value $199)

Course 5: Scrum Retrospectives:
Learn how to continuously improve your projects with agile retrospectives / kaizen
and how to organize sprint retrospectives for your teams (value $199)

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4BG9W9JQDXA6Y#/checkout/login
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4BG9W9JQDXA6Y#/checkout/login
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4BG9W9JQDXA6Y#/checkout/login
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4BG9W9JQDXA6Y#/checkout/login
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4BG9W9JQDXA6Y#/checkout/login
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4BG9W9JQDXA6Y#/checkout/login

Course 6: Scrum Master Case Studies
(Confessions):

Learn from 7 difficult situations / case studies based on my experience, and master
how to improve scrum in your business (value $199)

Bonus: Course 7: Scrum Advanced Training:
Learn the exact steps I took to get a scrum master job/role

Learn how to coach others with 72 reasons

Learn how to co-ordinate multiple teams using the scrum of scrums technique. (value
$199)

Click to buy $29.97 for a limited time
Click to buy $29.97 for a limited time

As I said, at the time of this document’s writing the online
video edition is being sold for the special price of $29.97.
So access it right now:

Click to buy $29.97 for a limited time
Click to buy $29.97 for a limited time

So I encourage you to take the step while the benefits are
still fresh in your mind and I look forward to seeing you
through the journey to explosive productivity and projects
that deliver on time!

Your sincerely,
Paul VII
Pashun Consulting Ltd.

https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4BG9W9JQDXA6Y#/checkout/login
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4BG9W9JQDXA6Y#/checkout/login
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4BG9W9JQDXA6Y#/checkout/login
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=4BG9W9JQDXA6Y#/checkout/login

